Directions: Any worksheet that is labeled with an * means it is suggested extra practice. We do not always have time to assign every possible worksheet that would be good practice for you to do. You can do this worksheet when you have extra time, when you finish something early, or to help you study for a quiz or a test. If and when you choose to do this Extra Practice worksheet, please do the work on binder paper. You will include this paper stapled into your Rainbow Packet when you turn it in, even if you didn't do any of this. We want to make sure we keep it where it belongs so you can do it later if you want to (or need to). If you did the work on binder paper you can include that in your Rainbow Packet after this worksheet. If we end up with extra class time then portions of this may turn into required work. If that happens you will be told which problems are turned into required. Remember there is tons of other extra practice on the class website...and the entire internet! See me if you need help finding practice on a topic you are struggling with.

Use your reference sheet or an appendix to obtain any needed thermodynamic data for the problems.

1) Using enthalpies of formation calculate ΔH° for the following reaction at $25^{\circ} \mathrm{C}$. Also calculate $\Delta \mathrm{S}^{\circ}$ for this reaction from standard entropies at $25^{\circ} \mathrm{C}$. Use these values to calculate $\Delta \mathrm{G}^{\circ}$ for the reaction at this temperature.

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

-1452.1 KJ, -164.8 KJ, -1403.0 KJ
2) The free energy of formation of one mole of compound refers to a particular chemical equation. For each of the following, write that equation.
a) NaCl (s)
b) $\mathrm{HCN}(\mathrm{l})$
c) $\mathrm{SO}_{2}(\mathrm{~g})$
d) $\mathrm{PH}_{3}(\mathrm{~g})$
3) Calculate the standard free energy of the following reactions at $25^{\circ} \mathrm{C}$, using standard free energies of formation.
a) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ -800.76
b) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \quad-56$.
4) On the basis of ΔG° for each of the following reactions, decided whether the reaction is spontaneous or nonspontaneous as written. Or, if you expect an equilibrium mixture with significant amounts of both reactants and products, say so.
a) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
$\Delta G^{\circ}=-91 \mathrm{~kJ}$
b) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\Delta G^{\circ}=-211 \mathrm{~kJ}$
c) $\mathrm{HCOOH} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$
$\Delta G^{\circ}=119 \mathrm{~kJ}$
d) $\mathrm{I}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{IBr}$
$\Delta G^{\circ}=7.5 \mathrm{~kJ}$
e) $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{3}+\mathrm{HCl}$
$\Delta G^{\circ}=92 \mathrm{~kJ}$
5) Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ for the following reactions at $25^{\circ} \mathrm{C}$, interpret the signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$.
a) $\mathrm{Al}_{2} \mathrm{O}_{3(l)}+2 \mathrm{Fe}_{(\mathrm{s})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})}$
756.88, 757.01
b) $\mathrm{COCl}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{HCl}_{(\mathrm{g})}$
$-116.7,-150.42$
6) Using enthalpies of formation calculate ΔH° for the following reactions at $25^{\circ} \mathrm{C}$. Also calculate $\Delta \mathrm{S}^{\circ}$ for this reaction from standard entropies at 25 C . Use these values to calculate $\Delta \mathrm{G}^{\circ}$ for the reaction at this temperature.
$4 \mathrm{HCN}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}+2 \mathrm{~N}_{2} \quad-2598.16,-216.78,-2533$
7) The free energy of formation of one mole of compound refers to a particular chemical equation. For each of the following, write that equation.
a) $\mathrm{CaO}(\mathrm{s})$
b) $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})$
c) $\mathrm{CS}_{2}(\mathrm{I}$
d) $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
8) Calculate the standard free energy of the following reactions at 25 C , using standard free energies of formation
a) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ -1314.24
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
-63.19
9) For each of the following reactions, state whether the reaction is spontaneous or non-spontaneous as written or is easily reversible (that is, is a mixture with significant amounts of reactants and products)
a) $\mathrm{HCN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}$

$$
\Delta G^{\circ}=-92 \mathrm{~kJ}
$$

b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ $\Delta G^{\circ}=173 \mathrm{~kJ}$
c) $2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2}$ $\Delta G^{\circ}=479 \mathrm{~kJ}$
d) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ $\Delta G^{\circ}=-191 \mathrm{~kJ}$
e) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$ $\Delta G^{\circ}=2.6 \mathrm{~kJ}$
10) Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ for the following rxns at $25^{\circ} \mathrm{C}$, using thermodynamic data; interpret signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$.
a) $2 \mathrm{PbO}+\mathrm{N}_{2} \rightarrow 2 \mathrm{~Pb}+2 \mathrm{NO}$
b) $\mathrm{CS}_{2}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}$;
-38.14, -33.85
11) Give the expression for the thermodynamic equilibrium constant for each of the following reactions at 298 K :
a) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
b) $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$ 9.29×10^{-12}
c) $2 \mathrm{Li}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{f}) \rightarrow 2 \mathrm{Li}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ 0.842
12) What is the standard free energy change ΔG° at $25^{\circ} \mathrm{C}$ for the following reaction? What is the value of the thermodynamic equilibrium constant $\mathrm{K} ? \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad-190.6,2.58 \times 10^{33}$
13) Calculate the standard free energy change and the equilibrium constant K_{p} for the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \underline{-142.4,9.27 \times 10^{24}}$
14) Obtain the equilibrium constant K_{c} at $25^{\circ} \mathrm{C}$ from the free-energy change for the reaction:
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cu}^{2+} \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \quad-520.99 \mathrm{~kJ}, 2.08 \times 10^{91}$
15) What is the standard free-energy change $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the following reaction?: C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Calculate the value of the equilibrium constant K . $-\underline{-394.4, ~ 1.35 \times 10^{69}}$
16) Calculate the standard free energy change and the equilibrium constant K_{p} for the following reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
$-29,1.21 \times 10^{5}$
17) Calculate the equilibrium constant K_{c} at 25 C from the free-energy change for the reaction:
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}(\mathrm{s}) \quad-212.19,1.56 \times 10^{37}$

